для решения диф-ура необходимо разделить переменные - привести
M(x,y)dx+D(x,y)dy=0
к виду
F(x)dx=S(y)dy,
затем взять интегралы слева и справа.
уравнения вида dx+F(x/y)dy=0 легко разделяются заменой t=x/y. При этом уравнение будет выглядеть как
ydt+(t+F(t))dy=0 =>
-dy/y=dt/(t+F(t))
Первый интеграл тривиален, второй также - табличный.
Прим. при разделении переменных при делении проверить на возможные решения когда делитель равен 0!!! и добавить их к решению.
Итак
-ydt=(t+exp(t)*(1-t)/(1+exp(t)))dy;=>
-dy/y=dt*(exp(t)+t)/(1+exp(t)); интегрируете, подставляете значение t=x/y;