1. В корзине лежат белые и черные шары, причем белых шаров 60%. Случайно выбрано 10 шаров из корзины. Какова вероятность, что среди них не меньше 7 белых шаров?
Решение:
это биномиальный закон
P(x>=7)= P(x=7) + P(x=8) + P(x=9) + P(x=10) = C(7; 10)*(0.6^7)*(0.4^3) + C(8; 10)*(0.6^8)*(0.4^2) + C(9; 10)*(0.6^9)*(0.4^1) + C(10; 10)*(0.6^10)*(0.4^0) = ...

2. В течение часа в среднем происходит 2 замыкания в приборе. Если происходит более 2-х замыканий, то приходится вызывать техника. Как часто придется вызывать техника в течение 100 часов?
Решение:
100*2 / 1=200 раз
Это и есть все решение? Что-то как уж очень просто... Может, я чего-то не допоняла?

3. Имеется 2 группы студентов, в каждой по 25 человек. В среднем успеваемость в каждой группе составляет 80%. Какова вероятность, что ровно 46 человек сдадут сессию без двоек?
Решение:
это биномиальный закон
P(x=46) = C(46; 50) * (0.8^46) * (0.2^4)=...
В правильности решения этой задачи тоже сомневаюсь немного...