1. Работают 5 токарных автоматов. Вероятность того, что в течении часа один автомат не потребует внимания рабочего равна 0.2. Найти вероятность того, что не более 2х автоматов потребуют внимания рабочего.

2. На предприятии вероятность изготовления годной детали равна 0.8. Вероятность того, что годная деталь является первого сорта, равна 0.5. Наугад взято 5 деталей. Найти вероятность того, что среди них ровно три первого сорта.

!FIXED! 3. Имеется 2 партии изделий: первая партия состоит из 3х изделий первого сорта и 2х изделий второго сорта. Вторая партия состоит из 4 х изделий первого сорта и одного изделия второго сорта. Наугад берут из одной партии два изделия, а из второй партии три изделия. Взятые изделия образуют новую партию, X-число изделий первого сорта в ней. Составить закон распределения X.

4. В задаче рассматривается схема биномиального распределения; п-число независимых испытаний; p-вероятность появления события А в одном испытании q=1-p, случайная величина мю-число наступлений события А за n независимых испытаний.
а) n=600, p=0.4. Найти вероятность P / мю = 240 /
б) Найти Е (Эпсилон), если п=3600, p=4/13

p( | м\n - p | > Е(Эпсилон) ) = 0.1

----------------------------------------------------------------------
Желательно подтолкнуть к решению каждой задачи, хотя бы напишите к какой теме относится каждая из них. Решение тоже приветствуется.