4y=x^2+(y')^2
y'=p(x)
dy/dx=p(x)
dy=pdx
4dy=2xdx+2pdp
4pdx=2xdx+2pdp
2-(x/p)=(dp/dx)
p/x=t(x)
После этого, кажется, получается ДУ с разделяющимися переменными.
Общее решение будет иметь вид y=g(p,x).
А если разрешить относительно производной, то получим y'=+-\sqrt{4y-x^2}. Пусть 4y-x^2=t^2(x), тогда 4y'=2x+2tt' --> y'=0,5(x+tt'). Далее: 0,5(x+tt')=+-t.