Здравствуйте, мне тоже понадобился этот пример.
Вот что получилось
R= lim n->00 / 2^n*(n+1)*(n+2)/(n*(n+1)*2^(n+1)) /=0.5
таким образом, ряд сходится для |x|<0.5, и расходится для |x|>0.5.
исследуем на концах интервала.
в точке x=0.5 получим (00; n=1) (2^n*0.5^n/(n*(n+1))=(00; n=1) (1^n/n*(n+1))
вот тут и запнулся. Это обобщённый гармонический у которого p=2?

в точке x=-0.5 получим (00; n=1) (2^n*-0.5^n/(n*(n+1))=(00; n=1) (-1^n/n*(n+1))
знакочередующийся, признак Лейбница, сходится (члены монотонно убывают, а общий член стремится к 0).
Всё правильно?