Для X1,X2-базисные, X3-свободная получается преобразованная матрица:
(1 0 ! -2 1)
(0 1 ! -2 4)
Общее решение: X1=X3-2
X2=4-(x3)/2
Базисное: X3=0 X1=-2 X2=4
Но, т.к. все три определителя матриц из пар коэфициентов отличны от нуля, получаются еще два решения. Как правильно эти три варианта объеденить в один общий(фундаментальный) ответ?
Сами варианты решены.