4) int 2xdx/(x^2-2x+2)=(2x-2+2)/(x^2-2x+2)dx=(2x-2)/(x^2-2x+2)dx + 2dx/(x^2-2x+2)
для первого слагаемого замена t=x^2-2x+2, тогда dt=(2x-2)dt,
получим интеграл int (2x-2)/(x^2-2x+2)dx=int dt/t
Для второго слагаемого выделяем полный квадрат в знаменателе: (x-1)^2 + 1, замена (x-1)=z dx=dz
получим int 2dx/(x^2-2x+2) = 2int dz/z^2+1=2arctgz + C
следовательно int dt/t + 2intdz/(z^2+1) = ln(t+C)+2arctgz + C=ln(x^2-2x+2)+2arctg(x-1)=log(x-2)(x+2)-2tan^-1 (1-x)
Я бы делала так, хотя и первое решение имеет право на существование. Но все сливается,Ю проверить не могу. Если что, то отсканируйте решение, тогда посмотрим.