В этом же пособии в соответствующем параграфе 6.3 есть задачи для самостоятельного решения (с ответами!). 1-я и 4-я - Ваши.
Напримр, первая задача.
Результатом эксперимента являются 7 чисел:
а1,а2,..,а7
где
а1 - номер сотрудника, которому дано первое поручение,
.....
а7 - номер сотрудника, которому дано седьмое поручение.
Каждое из чисел может быть любым от 1 до 10 (числа могут и повторяться). Поэтому общее число исходов эксперимента n=10^7.
Посчитаем число благоприятных исходов. Это можно сделать разными способами. Например, так. Посчитаем, сколькими способами можно из 10 сотрудников выбрать 7 (чтобы потом дать каждому из них по одному поручению). Поскольку в отобранной семерке сотрудников можно по разному "тасовать" данные поручения (т.е. важен порядок в выбранной семерке - например, первому по порядку выбранному сотруднику даем первое поручение, второму - второе и т.д), поэтому применяем формулу не сочетаний, а размещений: m=А(10,7). Ответ: P=m/n .