Помогите пожалуйста вычислить пределы интегрирования. Дальнейшее решение может у самого получится.
Требуется вычислить объем тела, ограниченного поверхностями, посредством двойного интеграла:
x^2+y^2+z^2=a^2, x^2+y^2=R^2, a>R
Решение: V=двойной int по G из корня квадратного (a^2-x^2-y^2)dxdy. Область G представляет собой окружность с центром в начале координат и с радиусом R. Про полярные координаты в задании ничего не говорится...