Есть общая теорема. Если в поле взять конечное число элементов, которое по умножению составляют группу, то эта группа циклична.
Кратко говорят так: всякая конечная группа поля циклична.
В данном случае это простое упражнение.
1) В выбранной группе модуль любого элемента равен 1, иначе эта группа очевидно бесконечна.
2) В силу конечности можно выбрать число с наименьшим положительным аргументом, запишем его в виде 2k\pi. Если k иррационально, то выбранное число является элементом бесконечного порядка (и попутно заметим, хотя и не используем, что минимального-то и нет). В рациональном случае же k=p/q выбранное число и будет примитивным элементом, то есть образующим циклической группы, а сама группа окажется группой всех корней степени q из единицы, иначе говоря в наименьшем аргументе будет p=1.
PS. Прошу прощения, прочитал только начало, которое не сулило продолжения, а оказывается и без меня дело шло к развязке. Жалко стирать - оставляю.