Если вы мне еще по русски раскажете, что такое Radon–Nikodym derivatives - будет просто супер.
Производная Радона - Никодима

Мера P называется абсолютно непрерывной по мере Q, если P(A) = 0 всякий раз, когда Q(A) = 0. (Области определения мер одинаковы). Теорема Радона - Никодима: Если мера P абсолютно непрерывна по мере Q, то существует функция f такая, что для всякого множества A выполнено: P(A) = интеграл по A от f(x)*Q(dx), где интеграл - интеграл по мере Лебега, а функция f(x) называется производной Радона - Никодима f=dP/dQ.
В случае абсолютно непрерывного (т.е. по мере Лебега) распределения производная Радона - Никодима - это то, что мы называем обычной плотностью распределения.
Для остальных распределений - наверное, в данной задаче не так актуально. Кому интересно - нарисую других примеров производных Радона - Никодима.