IPB

Здравствуйте, гость ( Вход | Регистрация )

> Задачки), Решить задачи
Андрей66
сообщение 5.11.2010, 17:12
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 1
Регистрация: 5.11.2010
Город: Россия
Учебное заведение: Московский ВУЗ



1. Из колоды в 52 карты извлекаются наудачу 4 карты. Найти вероятность события B = {в полученной выборке окажется хотя бы один туз}.
2. В бригаде 4 женщины и 3 мужчин. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчин?
3. Студент успел подготовить к экзаменам 20 вопросов из 25. Какова вероятность того, что из 3 наудачу выбранных вопросов студент знает не менее 2?

4. 4 стрелка независимо друг от друга стреляют по одной мишени, делая каждый по одному выстрелу. Вероятности попадания для данных стрелков равны 0,4; 0,6; 0,7; 0,8. После стрельбы в мишени обнаружены 3 пробоины. Найдите вероятность того, что промахнулся четвертый стрелок.
5. В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30% - с заболеванием L, 20% - с заболеванием М. Вероятность полного извлечения болезни К равна 0,7; для болезней L и М эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием К.

6. При установившемся технологическом процессе в день в среднем происходит 10 обрывов нити на 100 веретенах. Определить вероятность того, что на 800 веретенах произойдет:
а) ровно 78 обрывов нити;
б) обрыв нити произойдет не более чем на 100 веретенах.

7. Участник олимпиады отвечает на три вопроса с вероятностями ответа на каждый соответственно 0,6; 0,7; 0,4. За каждый верный ответ ему начисляется 5 баллов, за неверный списывается 5 баллов. Составить закон распределения числа баллов, полученных участником олимпиады. Найти математическое ожидание этой случайной величины.
8. Случайная величина Х подчинена нормальному закону распределения с нулевым математическим ожиданием. Вероятность попадания этой случайной величины в интервал (–2;2) равна 0,5705. Найти среднее квадратическое отклонение и плотность вероятности этой случайной величины.
Решите пожалуйста задачи (IMG:style_emoticons/default/yes.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 1:54

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru