IPB

Здравствуйте, гость ( Вход | Регистрация )

> Помогите разобраться в теории комплексных групп, Теория групп
Genmich
сообщение 29.8.2009, 0:01
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 2
Регистрация: 24.8.2009
Город: Харьков
Учебное заведение: ХГУ
Вы: другое



До последнего времени считал, что аналогом ортогональной вещественной матричной группы О(n,R),сохраняющей скалярное произведение,является унитарная комплексная матричная группа U(n,C), действующая уже в соответствующем комплексном пространстве и тоже сохраняющая скалярное произведение. Но вот обнаружил в книге "Современные геометрические структуры и поля",2005г,авторы С.П.Новиков,И.А.Тайманов в параграфе 6.1 под названием "Группы и алгебры Ли" на стр.175, используя условие ортогональности $A^TA=1$ для вещественных матричных групп,авторы применяют его теперь уже к комплексным матричным группам и таким образом определяют ортогональную комплексную матричную группу O(n,C) и при этом на стр.191,в пункте 6 "Комплексные группы Ли",утверждают, что группа O(n,C) тоже сохраняет скалярное произведение в пространстве $C^n$. Как такое может быть? Ведь в комплексном пространстве сохраняет скалярное произведение, по определению, только унитарные группы, удовлетворяющие условию $A^+A=1$. В чём здесь тонкости?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 1:51

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru